Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Arch Immunol Ther Exp (Warsz) ; 69(1): 25, 2021 Sep 16.
Article in English | MEDLINE | ID: covidwho-1411512

ABSTRACT

The term host defense peptides arose at the beginning to refer to those peptides that are part of the host's immunity. Because of their broad antimicrobial capacity and immunomodulatory activity, nowadays, they emerge as a hope to combat resistant multi-drug microorganisms and emerging viruses, such as the case of coronaviruses. Since the beginning of this century, coronaviruses have been part of different outbreaks and a pandemic, and they will be surely part of the next pandemics, this review analyses whether these peptides and their derivatives are ready to be part of the treatment of the next coronavirus pandemic.


Subject(s)
Antimicrobial Cationic Peptides/therapeutic use , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Pandemics , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/immunology , Anti-Inflammatory Agents/therapeutic use , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/immunology , Antiviral Agents/chemical synthesis , Antiviral Agents/immunology , Clinical Trials as Topic , Coronavirus/drug effects , Coronavirus/physiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Humans , Immunomodulation , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/virology
2.
Int J Mol Sci ; 22(15)2021 Jul 26.
Article in English | MEDLINE | ID: covidwho-1374420

ABSTRACT

For the treatment of severe COVID-19, supplementation with human plasma-purified α-1 antitrypsin (AAT) to patients is currently considered. AAT inhibits host proteases that facilitate viral entry and possesses broad anti-inflammatory and immunomodulatory activities. Researchers have demonstrated that an interaction between SARS-CoV-2 spike protein (S) and lipopolysaccharides (LPS) enhances pro-inflammatory responses in vitro and in vivo. Hence, we wanted to understand the potential anti-inflammatory activities of plasma-derived and recombinant AAT (recAAT) in a model of human total peripheral blood mononuclear cells (PBMCs) exposed to a combination of CHO expressed trimeric spike protein and LPS, ex vivo. We confirmed that cytokine production was enhanced in PBMCs within six hours when low levels of LPS were combined with purified spike proteins ("spike"). In the presence of 0.5 mg/mL recAAT, however, LPS/spike-induced TNF-α and IL-1ß mRNA expression and protein release were significantly inhibited (by about 46-50%) relative to LPS/spike alone. Although without statistical significance, recAAT also reduced production of IL-6 and IL-8. Notably, under the same experimental conditions, the plasma-derived AAT preparation Respreeza (used in native and oxidized forms) did not show significant effects. Our findings imply that an early pro-inflammatory activation of human PBMCs is better controlled by the recombinant version of AAT than the human plasma-derived AAT used here. Considering the increasing clinical interest in AAT therapy as useful to ameliorate the hyper-inflammation seen during COVID-19 infection, different AAT preparations require careful evaluation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Leukocytes, Mononuclear/metabolism , Spike Glycoprotein, Coronavirus/metabolism , alpha 1-Antitrypsin/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/immunology , CHO Cells , COVID-19/therapy , Cells, Cultured , Cricetulus , Cytokines/metabolism , Humans , Inflammation/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Lipopolysaccharides/immunology , Lipopolysaccharides/toxicity , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , alpha 1-Antitrypsin/chemistry , alpha 1-Antitrypsin/immunology
3.
Eur J Pharmacol ; 904: 174193, 2021 Aug 05.
Article in English | MEDLINE | ID: covidwho-1230460

ABSTRACT

Coronavirus (SARS-CoV-2) is spreading rapidly in the world and is still taking a heavy toll. Studies show that cytokine storms and imbalances in T-helper (Th)1/Th2 play a significant role in most acute cases of the disease. A number of medications have been suggested to treat or control the disease but have been discontinued due to their side effects. Melatonin, as an intrinsic molecule, possesses pharmacological anti-inflammatory and antioxidant properties that decreases in concentration with age; as a result, older people are more prone to various diseases. In this study, patients who were hospitalized with a diagnosis of coronavirus disease 2019 (COVID-19) were given a melatonin adjuvant (9 mg daily, orally) for fourteen days. In order to measure markers of Th1 and Th2 inflammatory cytokines (such as interleukin (IL)-2, IL-4, and interferon (IFN)-γ) as well as the expression of Th1 and Th2 regulatory genes (signal transducer and activator of transcription (STAT)4, STAT6, GATA binding protein 3 (GATA3), and T-box expressed in T cell (T-bet)), blood samples were taken from patients at the beginning and end of the treatment. Adjuvant therapy with melatonin controlled and reduced inflammatory cytokines in patients with COVID-19. Melatonin also controlled and modulated the dysregulated genes that regulate the humoral and cellular immune systems mediated by Th1 and Th2. In this study, it was shown for the first time that melatonin can be used as a medicinal adjuvant with anti-inflammatory mechanism to reduce and control inflammatory cytokines by regulating the expression of Th1 and Th2 regulatory genes in patients with COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Cytokines/blood , Melatonin , Signal Transduction , Th1 Cells , Th2 Cells , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/immunology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/immunology , Female , Humans , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Immunologic Factors/administration & dosage , Immunologic Factors/immunology , Iran/epidemiology , Male , Melatonin/administration & dosage , Melatonin/immunology , Middle Aged , SARS-CoV-2 , Signal Transduction/drug effects , Signal Transduction/immunology , Th1 Cells/drug effects , Th1 Cells/immunology , Th2 Cells/drug effects , Th2 Cells/immunology , Treatment Outcome
4.
Int Immunopharmacol ; 97: 107694, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1209540

ABSTRACT

In late 2019, a novel coronavirus (SARS-CoV-2) emerged in Wuhan city, Hubei province, China. Rapidly escalated into a worldwide pandemic, it has caused an unprecedented and devastating situation on the global public health and society economy. The severity of recent coronavirus disease, abbreviated to COVID-19, seems to be mostly associated with the patients' immune response. In this vein, mesenchymal stromal/stem cells (MSCs) have been suggested as a worth-considering option against COVID-19 as their therapeutic properties are mainly displayed in immunomodulation and anti-inflammatory effects. Indeed, administration of MSCs can attenuate cytokine storm and enhance alveolar fluid clearance, endothelial recovery, and anti-fibrotic regeneration. Despite advantages attributed to MSCs application in lung injuries, there are still several issues __foremost probability of malignant transformation and incidence of MSCs-related coagulopathy__ which should be resolved for the successful application of MSC therapy in COVID-19. In the present study, we review the historical evidence of successful use of MSCs and MSC-derived extracellular vesicles (EVs) in the treatment of acute respiratory distress syndrome (ARDS). We also take a look at MSCs mechanisms of action in the treatment of viral infections, and then through studying both the dark and bright sides of this approach, we provide a thorough discussion if MSC therapy might be a promising therapeutic approach in COVID-19 patients.


Subject(s)
COVID-19/therapy , Extracellular Vesicles/immunology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/immunology , Respiratory Distress Syndrome/therapy , Anti-Inflammatory Agents/immunology , Anti-Inflammatory Agents/therapeutic use , COVID-19/complications , Humans , Respiratory Distress Syndrome/etiology
5.
Am J Respir Crit Care Med ; 204(4): 421-430, 2021 08 15.
Article in English | MEDLINE | ID: covidwho-1180997

ABSTRACT

Rationale: Mechanical ventilation is a mainstay of intensive care but contributes to the mortality of patients through ventilator-induced lung injury. eCypA (extracellular CypA [cyclophilin A]) is an emerging inflammatory mediator and metalloproteinase inducer, and the gene responsible for its expression has recently been linked to coronavirus disease (COVID-19). Objectives: To explore the involvement of eCypA in the pathophysiology of ventilator-induced lung injury. Methods: Mice were ventilated with a low or high Vt for up to 3 hours, with or without blockade of eCypA signaling, and lung injury and inflammation were evaluated. Human primary alveolar epithelial cells were exposed to in vitro stretching to explore the cellular source of eCypA, and CypA concentrations were measured in BAL fluid from patients with acute respiratory distress syndrome to evaluate the clinical relevance. Measurements and Main Results: High-Vt ventilation in mice provoked a rapid increase in soluble CypA concentration in the alveolar space but not in plasma. In vivo ventilation and in vitro stretching experiments indicated the alveolar epithelium as the likely major source. In vivo blockade of eCypA signaling substantially attenuated physiological dysfunction, macrophage activation, and MMPs (matrix metalloproteinases). Finally, we found that patients with acute respiratory distress syndrome showed markedly elevated concentrations of eCypA within BAL fluid. Conclusions: CypA is upregulated within the lungs of injuriously ventilated mice (and critically ill patients), where it plays a significant role in lung injury. eCypA represents an exciting novel target for pharmacological intervention.


Subject(s)
Anti-Inflammatory Agents/immunology , Cyclophilin A/immunology , Inflammation/immunology , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/immunology , Respiratory Mucosa/immunology , Ventilator-Induced Lung Injury/immunology , Ventilator-Induced Lung Injury/physiopathology , Animals , COVID-19/genetics , COVID-19/physiopathology , Cells, Cultured/drug effects , Cyclophilin A/pharmacology , Humans , Inflammation/physiopathology , Male , Mice , Models, Animal , Respiratory Distress Syndrome/physiopathology , SARS-CoV-2 , Ventilator-Induced Lung Injury/genetics
6.
Int J Mol Sci ; 22(4)2021 Feb 12.
Article in English | MEDLINE | ID: covidwho-1085074

ABSTRACT

One of the most severe effects of coronavirus disease 2019 (COVID-19) is lung disorders such as acute respiratory distress syndrome. In the absence of effective treatments, it is necessary to search for new therapies and therapeutic targets. Platelets play a fundamental role in respiratory disorders resulting from viral infections, being the first line of defense against viruses and essential in maintaining lung function. The direct application of platelet lysate (PL) obtained from the platelet-rich plasma of healthy donors could help in the improvement of the patient due its anti-inflammatory, immunomodulatory, antifibrotic, and repairing effects. This work evaluates PL nebulization by analyzing its levels of growth factors and its biological activity on lung fibroblast cell cultures, besides describing a scientific basis for its use in this kind of pathology. The data of the work suggest that the molecular levels and biological activity of the PL are maintained after nebulization. Airway administration would allow acting directly on the lung tissue modulating inflammation and stimulating reparative processes on key structures such as the alveolocapillary barrier, improving the disease and sequels. The protocol developed in this work is a first step for the study of nebulized PL both in animal experimentation and in clinical trials.


Subject(s)
Anti-Inflammatory Agents/pharmacology , COVID-19/therapy , Immunologic Factors/pharmacology , Intercellular Signaling Peptides and Proteins/pharmacology , Platelet-Rich Plasma , Adult , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/immunology , Blood Platelets/immunology , COVID-19/immunology , Cell Line , Female , Humans , Immunologic Factors/administration & dosage , Immunologic Factors/immunology , Intercellular Signaling Peptides and Proteins/administration & dosage , Intercellular Signaling Peptides and Proteins/immunology , Male , Nebulizers and Vaporizers , Platelet-Rich Plasma/immunology , SARS-CoV-2/immunology , Treatment Outcome
8.
Mini Rev Med Chem ; 21(12): 1431-1456, 2021.
Article in English | MEDLINE | ID: covidwho-999944

ABSTRACT

Recently, a sudden outbreak of novel coronavirus disease (COVID-19) was caused by a zoonotic virus known as severe acute respiratory syndrome coronavirus (SARS-CoV-2). It has caused pandemic situations around the globe affecting the lives of millions of people. So far, no drug has been approved for the treatment of SARS-CoV-2 infected patients. As of now, more than 1000 clinical trials are going on for repurposing of FDA-approved drugs and for evaluating the safety and efficiency of experimental antiviral molecules to combat COVID-19. Since the development of new drugs may require months to years to reach the market, this review focusses on the potential of existing small molecule FDA approved drugs and the molecules already in the clinical pipeline against viral infections like HIV, hepatitis B, Ebola virus, and other viruses of coronavirus family (SARS-CoV and MERS-CoV). The review also discusses the natural products and traditional medicines in clinical studies against COVID-19. Currently, 1978 studies are active, 143 completed and 4 posted results (as of June 13, 2020) on clinicaltrials.gov.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Clinical Trials as Topic/methods , Drug Discovery/methods , Drug Repositioning/methods , SARS-CoV-2/drug effects , Anti-Inflammatory Agents/immunology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/immunology , Antiviral Agents/pharmacology , COVID-19/epidemiology , COVID-19/immunology , Drug Discovery/trends , Drug Repositioning/trends , Humans , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL